Euler-symmetric projective toric varieties and additive actions

نویسندگان

چکیده

Let Ga be the additive group of field complex numbers ℂ. We say that an irreducible algebraic variety X dimension n admits action if there is a regular Gan=Ga×…×Ga (n times) on with open orbit. In 2017 Baohua Fu and Jun-Muk Hwang introduced class Euler-symmetric varieties. They gave classification varieties proved any action. this paper we show in case projective toric converse also true. More precisely, admitting respect to linearly normal embedding into space. Also discuss some properties

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Syzygies of Projective Toric Varieties

We study the equations defining a projective embedding of a toric variety X using multigraded Castelnuovo-Mumford regularity. Consider globally generated line bundles B1, . . . , Bl and an ample line bundle L := B ⊗m1 1 ⊗ B2 2 ⊗ · · · ⊗ Bl l on X . This article gives sufficient conditions on mi ∈ N to guarantee that the homogeneous ideal I of X in P := P (

متن کامل

Self-dual projective toric varieties

Let T be a torus over an algebraically closed field k of characteristic 0, and consider a projective T -module P(V ). We determine when a projective toric subvariety X ⊂ P(V ) is self-dual, in terms of the configuration of weights of V .

متن کامل

Geometric invariant theory and projective toric varieties

We define projective GIT quotients, and introduce toric varieties from this perspective. We illustrate the definitions by exploring the relationship between toric varieties and polyhedra. Geometric invariant theory (GIT) is a theory of quotients in the category of algebraic varieties. Let X be a projective variety with ample line bundle L, and G an algebraic group acting on X, along with a lift...

متن کامل

On a family of projective toric varieties

By means of suitable sequences of graphs, in a previous paper, we have studied the reduced lexicographic Gröbner bases of a family of homogeneous toric ideals. In this paper, we deepen the analysis of those bases and derive some geometric properties of the corresponding projective toric varieties.

متن کامل

Centrally symmetric generators in toric Fano varieties

We give a structure theorem for n-dimensional smooth toric Fano varieties whose associated polytope has “many” pairs of centrally symmetric vertices. Introduction. Smooth toric Fano varieties, together with their equivariant birational contractions, have been intensively studied in recent years: see [WW82, Bat82, Bat99, Sat00, Bon00, Cas01b, Cas01c, Sat02]. In some cases, the toric case has bee...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Indagationes Mathematicae

سال: 2023

ISSN: ['0019-3577', '1872-6100']

DOI: https://doi.org/10.1016/j.indag.2022.09.001